OptimaLab35/image_handler.py

105 lines
4.3 KiB
Python

from PIL import Image, ImageDraw, ImageFont, ImageEnhance
import piexif
class ImageProcessor:
"""Functions using pillow are in here."""
def __init__(self):
pass
def open_image(self, path):
"""Open an image from path, returns image object."""
return Image.open(path)
def get_image_size(self, image):
"""Simply get image size."""
return image.size
def grayscale(self, image):
"""Change to grayscale"""
return image.convert("L")
def change_contrast(self, image, change):
enhancer = ImageEnhance.Contrast(image)
new_img = enhancer.enhance(1 + (change/100))
return new_img
def change_brightness(self, image, change):
enhancer = ImageEnhance.Brightness(image)
new_img = enhancer.enhance(1 + (change/100))
return new_img
def resize_image(self, image, percent, resample = True):
"""Resize an image by giving a percent."""
new_size = tuple(int(x * (percent / 100)) for x in image.size)
if resample:
resized_image = image.resize(new_size)
else:
resized_image = image.resize((new_size),resample=Image.Resampling.NEAREST)
return resized_image
def add_watermark(self, image, text, font_size_scale = 70):
drawer = ImageDraw.Draw(image)
imagewidth, imageheight = image.size
margin = (imageheight / 100 ) * 2 # margin dynamic, 2% of image size
font_size = imagewidth / font_size_scale # Scaling the font size
try:
font = ImageFont.truetype("OpenDyslexic3-Regular.ttf", font_size)
except:
print("Error loading font for watermark, exiting...")
exit()
c, w, textwidth, textheight, = drawer.textbbox(xy = (0, 0), text = text, font = font) # Getting text size, only need the last two values
x = imagewidth - textwidth - margin
y = imageheight - textheight - margin
drawer.text((x, y), text, font = font)
return image
def save_image(self, image, path, file_type, jpg_quality, png_compressing, _optimize, exif_data = None):
"""Saving images. Needs improvments."""
if exif_data != None:
if file_type == "jpg":
image.save(f"{path}.{file_type.lower()}", quality = jpg_quality, optimize = _optimize, exif = piexif.dump(exif_data))
elif file_type == "png":
image.save(f"{path}.{file_type.lower()}", compress_level = png_compressing, optimize = _optimize, exif = piexif.dump(exif_data))
else:
input(f"Type: {file_type} not yet aviable, enter to continue...")
else:
if file_type == "jpg":
image.save(f"{path}.{file_type.lower()}", quality = jpg_quality, optimize = _optimize)
elif file_type == "png":
image.save(f"{path}.{file_type.lower()}", compress_level = png_compressing, optimize = _optimize)
else:
input(f"Type: {file_type} not yet aviable, enter to continue...")
class ExifHandler:
"""Function using piexif are here."""
def __init__(self):
pass
def get_exif_info(self, image):
return(piexif.load(image.info['exif']))
def build_exif_dict(self, user_data, imagesize):
"""Build a piexif-compatible EXIF dictionary from user data."""
# Mostly made by ChatGPT, some adjustment by Mr Finchum
zeroth_ifd = {
piexif.ImageIFD.Make: user_data["make"],
piexif.ImageIFD.Model: user_data["model"],
piexif.ImageIFD.Software: user_data["software"],
piexif.ImageIFD.Copyright: user_data["copyright_info"],
piexif.ImageIFD.Artist: user_data["artist"],
piexif.ImageIFD.ImageDescription: user_data["image_description"],
piexif.ImageIFD.XResolution: (72, 1),
piexif.ImageIFD.YResolution: (72, 1),
}
exif_ifd = {
piexif.ExifIFD.DateTimeOriginal: user_data["date_time_original"],
piexif.ExifIFD.UserComment: user_data["user_comment"],
piexif.ExifIFD.ISOSpeedRatings: int(user_data["iso"]),
piexif.ExifIFD.PixelXDimension: imagesize[0],
piexif.ExifIFD.PixelYDimension: imagesize[1],
}
return {"0th": zeroth_ifd, "Exif": exif_ifd}